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THALES AND THE NINE-POINT CONIC

DAVID PIERCE

ABSTRACT

The nine-point circle is established by Euclidean means; the nine-point conic, Carte-
sian. Cartesian geometry is developed from Euclidean by means of Thales’s Theo-
rem. A theory of proportion is given, and Thales’s Theorem proved, on the basis of
Book 1 of Euclid’s Elements, without the Archimedean assumption of Book v. Eu-
clid’s theory of areas is used, although this is obviated by Hilbert’s theory of lengths.
It is observed how Apollonius relies on Euclid’s theory of areas. The historical foun-
dations of the name of Thales’s Theorem are considered. Thales is thought to have
identified water as a universal substrate; his recognition of mathematical theorems
as such represents a similar unification of things.
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1. Introduction

According to Herodotus of Halicarnassus, a war was ended by a solar
eclipse, and Thales of Miletus had predicted the year [41, 1.74]. The
war was between the Lydians and the Medes in Asia Minor; the year
was the sixth of the war. The eclipse is thought to be the one that must
have occurred on May 28 of the Julian calendar, in the year 585 before
the Common Era [38, p. 15, n. 3].

The birth of Thales is sometimes assigned to the year 624 B.C.E. This
is done in the “Thales” article on Wikipedia [74]; but it was also done
in ancient times (according to the reckoning of years by Olympiads).
The sole reason for this assignment seems to be the assumption that
Thales must have been forty when he predicted the eclipse [45, p. 76,
n. 1].
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Figure 1: The nine points

The nine-point circle was found early in the nineteenth century of
the Common Era. The 9-point conic, a generalization, was found later
in the century. The existence of the curves is proved with mathematics
that can be traced to Thales and that is learned today in high school.

In the Euclidean plane, every triangle determines a few points indi-
vidually: the incenter, circumcenter, orthocenter, and centroid. In ad-
dition to the vertices themselves, the triangle also determines various
triples of points, such as those in Figure 1: the feets e of the altitudes,
the midpoints 4 of the sides, and the midpoints A of the straight lines
running from the orthocenter to the three vertices. It turns out that
these nine points lie on a circle, called the nine-point circle or Eu-
ler circle of the triangle. The discovery of this circle seems to have
been published first by Brianchon and Poncelet in 1820-1 [13], then
by Feuerbach in 1822 [30, 31].

Precise references for the discovery of the nine-point circle are given
in Boyer’s History of Mathematics [12, pp. 573-4] and Kline’s Mathe-
matical Thought from Ancient to Modern Times [46, p. 837|. However,
as with the birth of Thales, precision is different from accuracy. Kline
attributes the first publication on the nine-point circle to “Gergonne
and Poncelet.” In consulting his notes, Kline may have confused an
author with the publisher, who was himself a mathematician. Boyer
mentions that the joint paper of Brianchon and Poncelet was pub-
lished in Gergonne’s Annales. The confusion here is a reminder that
even seemingly authoritative sources may be in error.

The mathematician is supposed to be a skeptic, accepting nothing
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before knowing its proof. In practice this does not always happen, even
in mathematics. But the ideal should be maintained, even in subjects
other than mathematics, like history.

There is however another side to this ideal. We shall refer often in
this essay to Euclid’s Elements [25, 26, 27, 28, 29|, and especially
to the first of its thirteen books. Euclid is accused of accepting things
without proof. Two sections of Kline’s history are called “The Merits
and Defects of the Elements” [46, ch. 4, §10, p. 86] and “The Defects
in Euclid” (ch. 42, §1, p. 1005). One of the supposed “defects” is,

he uses dozens of assumptions that he never states and

undoubtedly did not recognize.
We all do this, all the time; and it is not a defect. We cannot state ev-
erything that we assume; even the possibility of stating things is based
on assumptions about language itself. We try to state some of our as-
sumptions, in order to question them, as when we encounter a problem
with the ordinary course of life. By the account of R. G. Collingwood
[18], the attempt to work out our fundamental assumptions is meta-
physics.

Herodotus says the Greeks learned geometry from the Egyptians,
who needed it in order to measure how much land they lost to the
flooding of the Nile. Herodotus’s word yewuerpin means also surveying,
or “the art of measuring land” [41, 11.109]. According to David Fowler
in The Mathematics of Plato’s Academy [32, §7.1(d), pp. 231-4; §8.1,
pp. 279-81], the Egyptians defined the area of a quadrilateral field as
the product of the averages of the pairs of opposite sides.

The Egyptian rule is not strictly accurate. Book 1 of the Elements
corrects the error. The climax of the book is the demonstration, in
Proposition 45, that every straight-sided field is ezactly equal to a
certain parallelogram with a given side.

Euclid’s demonstrations take place in a world where, as Archimedes
postulates [6, p. 36,

among unequal [magnitudes|, the greater exceeds the smaller

by such [a difference] that is capable, added itself to itself,

of exceeding everything set forth . . .
This is the world in which the theory of proportion in Book v of the
Elements is valid. A theory of proportion is needed for the Cartesian
geometry whereby the nine-point conic is established.

One can develop a theory of proportion that does not require the
Archimedean assumption. Is it a defect that Euclid does not do this?
We shall do it, trying to put into the theory only enough to make
Thales’s Theorem true. This is the theorem that, if a straight line
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cuts two sides of a triangle, it cuts them proportionally if and only if
it is parallel to the third side. I shall call this Thales’s Theorem for
convenience, and because it is so called in some countries today [53].
There is also some historical basis for the name: we shall investigate
how much.

The present essay is based in part on notes prepared originally for one
of several twenty-minute talks at the Thales Bulusmasi (Thales Meet-
ing), held in the Roman theater in the ruins of Thales’s home town,
September 24, 2016. The event was arranged by the Tourism Research
Society (Turizm Arastirmalari Dernegi, TURAD) and the office of the
mayor of Didim. Part of the Aydin province of Turkey, the district
of Didim encompasses the ancient Ionian cities of Priene and Miletus,
along with the temple of Didyma. This temple was linked to Miletus,
and Herodotus refers to the temple under the name of the family of
priests, the Branchidae.

My essay is based also on notes from a course on Pappus’s Theorem
and projective geometry given at my home university, Mimar Sinan, in
Istanbul, and at the Nesin Mathematics Village, near the Ionian city
of Ephesus.

To seal the Peace of the Eclipse, the Lydian King Alyattes gave his
daughter Aryenis to Astyages, son of the Median King Cyaxares [41,
1.74]. It is not clear whether Aryenis was the mother of Astyages’s
daughter Mandane, whom Astyages married to the Persian Cambyses,
and whose son Astyages tried to murder, because of the Magi’s unfa-
vorable interpretation of certain dreams [41, 1.107-8]. That son was
Cyrus, who survived and grew up to conquer his grandfather. Again
Herodotus is not clear that this was the reason for the quarrel with
Cyrus by Croesus [41, 1.75], who was son and successor of Alyattes
and thus brother of Astyages’s consort Aryenis. But Croesus was ad-
vised by the oracles at Delphi and Amphiaraus that, if he attacked
Persia, a great empire would be destroyed, and that he should make
friends with the mightiest of the Greeks [41, 1.52-3]. Perhaps it was in
obedience to this oracle that Croesus sought the alliance with Miletus
mentioned by Diogenes Laertius, who reports that Thales frustrated
the plan, and “this proved the salvation of the city when Cyrus ob-
tained the victory” [24, 1.25]. Nonetheless, Herodotus reports a general
Greek belief—which he does not accept—that Thales helped Croesus’s
army march to Persia by diverting the River Halys (today’s Kizilirmak)
around them [41, 1.75]. But Croesus was defeated, and thus his own
great empire was destroyed.

When the victorious Cyrus returned east from the Lydian capital of
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Sardis, he left behind a Persian called Tabulus to rule, but a Lydian
called Pactyes to be treasurer [41, 1.153]. Pactyes mounted a rebellion,
but it failed, and he sought asylum in the Aeolian city of Cyme. The
Cymaeans were told by the oracle at Didyma to give him up [41, 1.157—
9]. In disbelief, a Cymaean called Aristodicus began driving away the
birds that nested around the temple.

But while he so did, a voice (they say) came out of the inner

shrine calling to Aristodicus, and saying, “Thou wickedest

of men, wherefore darest thou do this? wilt thou rob my

temple of those that take refuge with me?” Then Aristod-

icus had his answer ready: “O King,” said he, “wilt thou

thus save thine own suppliants, yet bid the men of Cyme

deliver up theirs?” But the god made answer, “Yea, I do

bid them, that ye may the sooner perish for your impiety,

and never again come to inquire of my oracle concerning

the giving up of them that seek refuge with you.”
As the temple survives today, so does the sense of the injunction of the
oracle, in a Turkish saying [50, p. 108]:

Isteyenin bir yiizii kara, vermeyenin iki yiizii.

Who asks has a black face, but who does not give has two.

From his studies of art, history, and philosophy, Collingwood con-
cluded that “all history is the history of thought” [17, p. 110]. As a
form of thought, mathematics has a history. Unfortunately this is for-
gotten in some Wikipedia articles, where definitions and results may
be laid out as if they have been understood since the beginning of
time. We can all rectify this situation, if we will, by contributing to
the encyclopedia. On May 13, 2013, to the article “Pappus’s Hexagon
Theorem” [73], I added a section called “Origins,” giving Pappus’s own
proof. The theorem can be seen as lying behind Cartesian geometry.

In his Geometry of 1637, Descartes takes inspiration from Pappus,
whom he quotes in Latin, presumably from Commandinus’s edition of
1588 [21, p. 6, n. 9]; the 1886 French edition of the Geometry has a
footnote [23, p. 7], seemingly in Descartes’s voice, although other foot-
notes are obviously from an editor: “I cite rather the Latin version than
the Greek text, so that everybody will understand me more easily.”

The admirable Princeton Companion to Mathematics [36, pp. 47-76]
says a lot about where mathematics is now in its history. In one chapter,
editor Timothy Gowers discusses “The General Goals of Mathemati-
cal Research.” He divides these goals among nine sections: (1) Solving
Equations, (2) Classifying, (3) Generalizing, (4) Discovering Patterns,
(5) Explaining Apparent Coincidences, (6) Counting and Measuring,
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Figure 2: A nine-point hyperbola

(7) Determining Whether Different Mathematical Properties Are Com-
patible, (8) Working with Arguments That Are Not Fully Rigorous,
(9) Finding Explicit Proofs and Algorithms. These are some goals of
research today. There is a tenth section of the chapter, but its title
is general: “What Do You Find in a Mathematical Paper?” As Gow-
ers says, the kind of paper that he means is one written on a pattern
established in the twentieth century.

The Princeton Companion is expressly not an encyclopedia. One
must not expect every species of mathematics to meet one or more
of Gowers’s enumerated goals. Geometrical theorems like that of the
nine-point circle do not really seem to meet the goals. They are old-
fashioned. The nine-point circle itself is not the explanation of a co-
incidence; it is the coincidence that a certain set of nine points all
happen to lie at the same distance from a tenth point. A proof of this
coincidence may be all the explanation there is. The proof might be
described as explicit, in the sense of showing how that tenth point can
be found; but in this case, there can be no other kind of proof. From
any three points of a circle, the center can be found.

One can generalize the nine-point circle, obtaining the nine-point
conic, which is determined by any four points in the Euclidean plane,
provided no three are collinear. As in Figures 2 and 3, where the four
points are A, B, C'; and D, the conic passes through the midpoints A
of the straight lines bounded by the six pairs formed out of the four
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Figure 3: A nine-point ellipse

points, and it also passes through the intersection points e of the pairs
of straight lines that together pass through all four points.

The discovery of the nine-point circle itself would seem not to be
the accomplishment of any particular goal, beyond simple enjoyment.
Indeed, one might make an alternative list of goals of mathematical
research: (1) personal satisfaction, (2) satisfying collaboration with
friends and colleagues, (3) impressing those friends and colleagues,
(4) serving science and industry, (5) winning a grant, (6) earning a
promotion, (7) finding a job in the first place. These may be goals in
any academic pursuit. But none of them can come to be recognized as
goals unless the first one or two have actually been achieved. First you
have to find out by chance that something is worth doing for its own
sake, before you can put it to some other use.

The present essay is an illustration of the general point. A fellow
alumnus of St John’s College [56] expressed to me, along with other
alumni and alumnae, the pleasure of learning the nine-point circle. Not
having done so before, I learned it too, and also the nine-point conic.
I wrote out proofs for my own satisfaction. The proof of the circle
uses the theorem that a straight line bisecting two sides of a triangle
is parallel to the third. This is a special case of Thales’s Theorem.
The attribution to Thales actually obscures some interesting mathe-
matics; so I started writing about this, using the notes I mentioned.
Thales’s Theorem allows a theoretical justification of the multiplication
that Descartes defines in order to introduce algebra to geometry. The
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nine-point conic is an excellent illustration of the power of Descartes’s
geometry; Thales’s Theorem can make the geometry rigorous. However,
David Hilbert takes another approach.

The first-year students in my department in Istanbul read Euclid for
themselves in their first semester. They learn implicitly about Descartes
in their second semester, in lectures on analytic geometry. I have read
Pappus with older students too, as I mentioned. All of the courses have
been an opportunity and an impetus to clarify the transition from Eu-
clid to Descartes. The nine-point circle and conic provide an occasion
to bring the ideas together; but doing this does represent the accom-
plishment of a preconceived goal.

The high-school geometry course that I took in 19801 in Washington
could have included the nine-point circle. The course was based on
the text by Weeks and Adkins, who taught proofs in the two-column,
“statement-reason” format [72, pp. 47-8]. A 1982 edition of the text is
apparently still available, albeit from a small publisher. The persistence
of the text is satisfying, though I was not satisfied by the book as a
student. The tedious style had me wondering why we did not just read
Euclid’s Elements. I did this on my own, and I did it three years later
as a student at St John’s College.

After experiencing Euclid, both as student and teacher, I have gone
back to detect foundational weaknesses in the Weeks—Adkins text. One
of them is the confusion of equality with sameness. I discuss this in
detail elsewhere [59]. The distinction between equality and sameness
is important, in geometry if not in algebra. In geometry, equal line
segments have the same [ength; but the line segments are still not in
any sense the same segment. An isosceles triangle has two equal sides.
But in Euclid, two ratios are never equal, although they may be the
same. This helps clarify what can be meant by a ratio in the first place.
In modern terms, a ratio is an equivalence class; so any definition of
ratio must respect this.

Another weakness of Weeks and Adkins has been shared by most
modern books, as far as [ know, since Descartes’s Geometry. The weak-
ness lies in the treatment of Thales’s Theorem. The meaning of the the-
orem, the truth of the theorem, and the use of the theorem to justify
algebra—mnone of these are obvious. In The Foundations of Geometry,
Hilbert recognizes the need for work here, and he does the work [43,
pp. 24-33]. Weeks and Adkins recognize the need too, but only to the
extent of proving Thales’s Theorem for commensurable divisions, then
mentioning that there is an incommensurable case. They do this in a
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section labelled [B] for difficulty and omissibility [72, pp. v, 212-4].
They say,

Ideas involved in proofs of theorems for incommensurable

segments are too difficult for this stage of our mathematics.
Such condescension is annoying; but in any case, we shall establish
Thales’s Theorem as Hilbert does, in the sense of not using the Archimedean
assumption that underlies Euclid’s notion of commensurability.

First we shall use the theory of areas as developed in Book 1 of the
Elements. This relies on Common Notion 5: the whole is greater than
the part, not only when the whole is a bounded straight line, but also
when it is a bounded region of the plane. When point B lies between
A and C on a straight line, then AC' is greater than AB; and when
two rectangles share a base, the rectangle with the greater height is
the greater. Hilbert shows how to prove the latter assertion from the
former. He does this by developing an “algebra of segments.”

We shall review this “algebra of segments”; but first we shall focus on
the “algebra of areas.” It is not really algebra, in the sense of relying on
strings of juxtaposed symbols; it relies on an understanding of pictures.
In The Shaping of Deduction in Greek Mathematics [49, p. 23], Reviel
Netz examines how the diagram of an ancient Greek mathematical
proposition is not always recoverable from the text alone. The diagram
is an integral part of the proposition, even its “metonym”: it stands
for the entire proposition the way the enunciation of the proposition
stands today [49, p. 38]. In the summary of Euclid called the Bones
[28], both the enunciations and the diagrams of the propositions of the
Elements are given. Unlike, say, Homer’s [liad, Euclid’s Elements is
not a work that one understands through hearing it recited by a blind
poet.

The same will be true for the present essay, if only because I have
not wanted to take the trouble to write out everything in words. The
needs of blind readers should be respected; but this might be done
best with tactile diagrams, which could benefit sighted readers as well.
What Collingwood writes in The Principles of Art [15, pp. 146-7]
about painting applies also to mathematics:

The forgotten truth about painting which was rediscovered
by what may be called the Cézanne-Berenson approach
to it was that the spectator’s experience on looking at a
picture is not a specifically visual experience at all . . . It
does not belong to sight alone, it belongs also (and on some
occasions even more essentially) to touch . . . [Berenson] is
thinking, or thinking in the main, of distance and space
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and mass: not of touch sensations, but of motor sensations

such as we experience by using our muscles and moving our

limbs. But these are not actual motor sensations, they are

imaginary motor sensations. In order to enjoy them when

looking at a Masaccio we need not walk straight through

the picture, or even stride about the gallery; what we are

doing is to imagine ourselves as moving in these ways.
To imagine these movements, I would add, one needs some experience
of making them. Doing mathematics requires some kind of imaginative
understanding of what the mathematics is about. This understanding
may be engendered by drawings of triangles and circles; but then it
might just as well, if not better, be engendered by triangles and circles
that can be held and manipulated.

Descartes develops a kind of mathematics that might seem to require

a minimum of imagination. If you have no idea of the points that you
are looking for, you can just call them (x,y) and proceed. Pappus
describes the general method [52, 634, p. 82]:

Now, analysis is the path from what one is seeking, as if it

were established, by way of its consequences, to something

that is established by synthesis. That is to say, in analysis

we assume what is sought as if it has been achieved, and

look for the thing from which it follows, and again what

comes before that, until by regressing in this way we come

upon some one of the things that are already known, or

that occupy the rank of a first principle. We call this kind

of method ‘analysis’; as if to say anapalin lysis (reduction

backward).
The derivation of the nine-point conic will be by Cartesian analysis.

In Rule Four of the posthumously published Rules for the Direction

of the Mind [22, 373, p. 17], Descartes writes of a method that is

so useful . . . that without it the pursuit of learning would,

I think, be more harmful than profitable. Hence I can read-

ily believe that the great minds of the past were to some

extent aware of it, guided to it even by nature alone . . .

This is our experience in the simplest of sciences, arith-

metic and geometry: we are well aware that the geometers

of antiquity employed a sort of analysis which they went

on to apply to the solution of every problem, though they

begrudged revealing it to posterity. At the present time a

sort of arithmetic called “algebra” is flourishing, and this is

achieving for numbers what the ancients did for figures . . .
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But if one attends closely to my meaning, one will readily

see that ordinary mathematics is far from my mind here,

that it is quite another discipline I am expounding, and

that these illustrations are more its outer garments than

its inner parts . . . Indeed, one can even see some traces of

this true mathematics, I think, in Pappus and Diophantus

who, though not of that earliest antiquity, lived many cen-

turies before our time. But I have come to think that these

writers themselves, with a kind of pernicious cunning, later

suppressed this mathematics as, notoriously, many inven-

tors are known to have done where their own discoveries

are concerned . . . In the present age some very gifted men

have tried to revive this method, for the method seems to

me to be none other than the art which goes by the out-

landish name of “algebra”—or at least it would be if algebra

were divested of the multiplicity of numbers and imprehen-

sible figures which overwhelm it and instead possessed that

abundance of clarity and simplicity which I believe true

mathematics ought to have.
Possibly Apollonius is, for Descartes, of “earliest antiquity”; but in any
case he precedes Pappus and Diophantus by centuries. He may have a
secret weapon in coming up with his propositions about conic sections;
but pace Descartes, I do not think it is Cartesian analysis. One cannot
have a method for finding things, unless one already has—or somebody
has—a good idea of what one wants to find in the first place. As if
opening boxes to see what is inside, Apollonius slices cones. This is
why we can now write down equations and call them conic sections.

Today we think of conic sections as having axes: one for the parabola,
and two each for the ellipse and hyperbola. The notion comes from
Apollonius; but for him, an axis is just a special case of a diameter. A
diameter of a conic section bisects certain chords of the section that are
all parallel to one another. In Book I of the Conics [2, 3], Apollonius
shows that every straight line through the center of an ellipse or hyper-
bola is a diameter in this sense; and every straight line parallel to the
axis is a diameter of a parabola. One can give a proof by formal change
of coordinates; but the proof of Apollonius involves areas, and it does
not seem likely that this is his translation of the former proof. In any
case, for comparison, we shall set down both proofs, for the parabola
at least.
In introducing the nine-point circle near the beginning of his Intro-
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duction to Geometry [19, p. 18], Coxeter quotes Pedoe on the same
subject from Circles [54, p. 1]:

This [nine-point] circle is the first really exciting one to

appear in any course on elementary geometry.
[ am not sure whether to read this as encouragement to learn the nine-
point circle, or as disparagement of the education that the student
might have had to endure, in order to be able to learn the circle. In
any case, all Euclidean circles are the same in isolation. In Book 111
of the Elements are the theorems that every angle in a semicircle is
right (111.31) and that the parts of intersecting chords of a circle bound
equal rectangles (111.35). The former theorem is elsewhere attributed
to Thales. Do not both theorems count as exciting? The nine-point
circle is exciting for combining the triangles of Book 1 with the circles
of Book I1I.

2. The Nine-point Circle

2.1. Centers of a triangle The angle bisectors of a triangle,
and the perpendicular bisectors of the sides of the triangle, meet re-
spectively at single points, called today the incenter and circumcen-
ter of the triangle [72, pp. 187-8|. This is an implicit consequence of
Elements 1v.4 and 5, where circles are respectively inscribed in, and cir-
cumscribed about, a triangle; the centers of these circles are the points
just mentioned.

The concurrence of the altitudes of a triangle is used in the Book of
Lemmas. The book is attributed ultimately to Archimedes, and Heiberg
includes a Latin rendition in his own edition of Archimedes [4, p. 427].
However, the book comes down to us originally in Arabic. Its Proposi-
tion 4 [5, p. 304-5] concerns a semicircle with two semicircles removed,
as in Figure 4; the text quotes Archimedes as having called the shape an
arbelos, or shoemaker’s knife. In the only such instance that I know
of, the big Liddell-Scott lexicon [47, p. 235] illustrates the dpBylos
entry with a picture of the shape. The term and the shape came to my
attention, before the high-school course that I mentioned, in a “Math-
ematical Games” column of Martin Gardner [34, ch. 10, p. 149]. The
second theorem that Gardner mentions is Proposition 4 of the Book of
Lemmas: the arbelos ABCD is equal to the circle whose diameter is
BD. Proposition 5 is that the circles inscribed in the two parts into
which the arbelos is cut by BD are equal; the proof appeals to the
theorem that the altitudes of a triangle concur at a point.

Today that point is the orthocenter of the triangle, and its existence
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A B C

Figure 4: The arbelos

Figure 5: Concurrence of altitudes

follows from that of the circumcenter. In Figure 5, where the sides of
triangle GH K are parallel to the respective sides of ABC, the altitudes
AD, BE, and CF of ABC are the perpendicular bisectors of the sides
of GHK. Since these perpendicular bisectors concur at L, so do the
altitudes of ABC'.

In Propositions 13 and 14 of On the Equilibrium of Planes [5, p. 198
201], Archimedes shows that the center of gravity of a triangle must lie
on a median, and therefore must lie at the intersection of two medians.
Implicitly then, the three medians must concur at a point, which we
call the centroid, though Archimedes’s language suggests that this is
known independently. The existence of the centroid follows from the
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Figure 6: Bisector of two sides of a triangle

special case of Thales’s Theorem that we shall want anyway, to prove
the nine-point circle.

THEOREM 1. A straight line bisecting a side of a triangle bisects a
second side if and only if the cutting line is parallel to the third side.

Proof. 1In triangle ABC in Figure 6, let D be the midpoint of side
AB (Elements 1.10), and let DE and DF be drawn parallel to the other
sides (Elements 1.31). Then triangles ADE and DBF have equal sides
between equal angles (Elements 1.29), so the triangles are congruent
(Elements 1.26). In particular, AE = DF. But in the parallelogram
CEDF, DF = EC (Elements 1.34). Thus AE = EC. Therefore DE
is the bisector of two sides of ABC'. Conversely, since there is only one
such bisector, it must be the parallel to the third side. O

For completeness, we establish the centroid. In Figure 7, if AD and
CF are medians of triangle ABC, and BH is drawn parallel to AD,
then, by passing though G, BFE bisects C'H by the theorem just proved,
and the angles FBH and F'AG are equal by FElements 1.27. Since the
vertical angles BF'H and AFG are equal (Elements 1.15), and BF =
AF | the triangles BFH and AFG must be congruent (Elements 1.26),
and in particular BH = AG. Since these straight lines are also parallel,
so are AH and BE (Elements 1.33). Again by Theorem 1, BE bisects
AC.

2.2. The angle in the semicircle We shall want to know that
the angle in a semicircle is right. This is Proposition 111.31 of Euclid;
but an attribution to Thales is passed along by Diogenes Laertius, the
biographer of philosophers [24, 1.24-5]:

Pamphila says that, having learnt geometry from the Egyp-
tians, he [Thales] was the first to inscribe in a circle a right-
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Figure 7: Concurrence of medians

Figure 8: The angle in the semicircle

angled triangle, whereupon he sacrificed an ox. Others say

it was Pythagoras, among them being Apollodorus the cal-

culator.
The theorem is easily proved by means of Elements 1.32: the angles of
a triangle are together equal to two right angles. Let the side BC' of
triangle ABC' in Figure 8 be bisected at D, and let AD be drawn. If
A lies on the circle with diameter BC', then the triangles ABD and
AC'D are isosceles, so their base angles are equal, by Flements 1.5: this
is also attributed to Thales, as we shall discuss later. Meanwhile, the
four base angles being together equal to two right angles, the two of
them that make up angle BAC' must together be right. The converse



42 DAVID PIERCE

- ~
.7 N
P \
\
/ \
/ \
| \
| \
| |
\ 1
\ ]
\ /
\ /
\ N ,
N -
~ -~ _- e
(a) A rectangle in a circle (b) A locus of right angles

Figure 9: Right angles and circles

follows from FElements 1.21, which has no other obvious use: an angle
like BEC' inscribed in BAC' is greater than BAC', circumscribed, like
BFC, less.

Thales may have established FElements 111.31; but it is hard to at-
tribute to him the proof based on 1.32 when Proclus, in his Commen-
tary on the First Book of Fuclid’s Elements, attributes this result to
the Pythagoreans [62, 379.2], who came after Thales. Proclus cites
the now-lost history of geometry by Eudemus, who was apparently a
student of Aristotle.

In his History of Greek Mathematics, Heath [39, pp. 136-7] proposes
an elaborate argument for 111.31 not using the general theorem about
the sum of the angles of a triangle. If a rectangle exists, one can prove
that the diagonals intersect at a point equidistant from the four ver-
tices, so that they lie on a circle whose center is that intersection point,
as in Figure 9a. In particular then, a right angle is inscribed in a semi-
circle.

It seems to me one might just as well draw two diameters of a circle
and observe that their endpoints, by symmetry, are the vertices of an
equiangular quadrilateral. This quadrilateral must then be a rectangle:
that is, the four equal angles of the quadrilateral must together make
a circle. This can be inferred from the observation that equiangular
quadrilaterals can be used to tile floors.

Should the existence of rectangles be counted thus, not as a theo-
rem, but as an observation, if not a postulate? In A Short History of
Greek Mathematics, which is earlier than Heath’s history, Gow [35, p.
144] passes along a couple of ideas of one Dr Allman about inductive
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Figure 10: The nine-point circle

reasoning. From floor tiles, one may induce, as above, that the angle
in a semicircle is right. By observation, one may find that the locus of
apices of right triangles whose bases (the hypotenuses) are all the same
given segment is a semicircle, as in Figure 9b.

2.3. The nine-point circle

THEOREM 2 Nine-point Circle. In any triangle, the midpoints of
the sides, the feet of the altitudes, and the midpoints of the straight
lines drawn from the orthocenter to the vertices lie on a single circle.

Proof.  Suppose the triangle is ABC' in Figure 10. Let the altitudes
BE and CF be dropped (Elements 1.12); their intersection point is P.
Let AP be drawn and extended as needed, so as to meet BC at D.
We already know that P is the orthocenter of ABC, so AD must be
at right angles to BC; in fact we shall prove this independently.

Bisect BC, C'A, and AB at GG, H, and K respectively, and bisect
PA, PB, and PC at L, M, and N respectively. By Theorem 1, GK
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and LN are parallel to AC; so they are parallel to one another, by
Elements 1.30. Similarly KL and NG are parallel to one another, being
parallel to BE. Then the quadrilateral GK LN is a parallelogram; it
is a rectangle, by Flements 1.29, since AC' and BE are at right angles
to one another. Likewise GHLM is a rectangle. The two rectangles
have common diagonal GL, and so the circle with diameter GL also
passes through the remaining vertices of the rectangles, by the converse
of Flements 111.31, discussed above. Similarly, the respective diagonals
KN and HM of the two rectangles must be diameters of the circle,
and so K HN M is a rectangle; this yields that AD is at right angles to
BC'. The circle must pass through F, since angle M FH is right, and
MH is a diameter; likewise the circle passes through F' and G. O

The Nine-point Circle Theorem is symmetric in the vertices and or-
thocenter of the triangle. These four points have the property that the
straight line through any two of them passes through neither of the
other two; moreorever, the line is at right angles to the straight line
through the remaining two vertices. In other words, the points are the
vertices of a complete quadrangle, and each of its three pairs of op-
posite sides are at right angles to one another. The intersection of a
pair of opposite sides being called a diagonal point, a single circle
passes through the three of these and the midpoints of the six sides.

We proceed to the case of a complete quadrangle whose opposite
sides need not be at right angles. There will be a single conic section
passing through the three diagonal points and the midpoints of the six
sides. The proof will use Cartesian geometry, as founded on Thales’s
Theorem.

3. The Nine-point Conic

3.1. Thales’s Theorem A rudimentary form of Thales’s Theo-
rem is mentioned in the fanciful dialogue by Plutarch called Dinner of
the Seven Wise Men [61, §2, pp. 351-3]. Here the character of Neilox-
enus says of and to Thales,

he does not try to avoid, as the rest of you do, being a friend
of kings and being called such. In your case, for instance,
the king [of Egypt] finds much to admire in you, and in
particular he was immensely pleased with your method of
measuring the pyramid, because, without making any ado
or asking for any instrument, you simply set your walking-
stick upright at the edge of the shadow which the pyramid
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cast, and, two triangles being formed by the intercepting of
the sun’s rays, you demonstrated that the height of
the pyramid bore the same relation to the length
of the stick as the one shadow to the other.

The word translated as “relation” here, in the sentence that I have
emboldened, is Adyos. This is usually translated as “ratio” in mathe-
matics. The whole sentence is

&deéas
OV 1) OKLA TTPOS TNV OKLAV AGYOoV €lxE
v mupauda mpos Ty PBakTnplav Eéxovoar [60];
stretching the bounds of English style, one might render this literally
as
You showed,
what ratio the shadow had to the shadow,

the pyramid [as| having to the staff.
It would be clearer to reverse the order of the last two lines. If the
pyramid’s height and shadow have lengths P and L, the shadow and
height being measured from the center of the base, while the lengths of
Thales’s height and shadow are p and ¢, then we may write the claim
as

P:p::L:/{ (3.1)
If not theoretically, this must mean practically
P-l{=L-p, (3.2)

that is, the rectangle of dimensions P and ¢ is equal to the rectangle
of dimensions L and p. Then what is being attributed to Thales is
something like the rectangular case of Elements 1.43:
In any parallelogram the complements of the parallelograms
about the diameter are equal to one another.
Thus in the parallelogram ABC'D in Figure 11, where AGC'is a straight
line, the parallelograms BG and GD are equal. I pause to note that
Euclid’s two-letter notation for parallelograms here is not at all am-
biguous in Euclid’s Greek, where a diagonal of a parallelogram may be
7 AB, while the parallelogram itself is 70 AB; the articles 1 and 70
are feminine and neuter respectively. Euclid’s word mapamAijpwua for
complement is neuter, like wapaAAnAdypaupov “parallelogram” itself,
while ypauun “line” is feminine. This observation, made in [57], is
based on similar observations by Reviel Netz [49].
In Figure 11, the parallelograms BG and G D are equal because they
are the result of subtracting equal triangles from equal triangles; the
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Figure 12: The rectangular case of Thales’s Theorem

equalities of the triangles (AEG = GH A and so forth) are by Elements
1.34. The theorem that Plutarch attributes to Thales may now simply
be the following.

THEOREM 3. In equiangular right triangles, the rectangles bounded
by alternate legs are equal.

Proof. Let the equiangular right triangles be ABC and AEF in
Figure 12. We shall show

AF - AB = AE - AC. (3.3)

It will be enough to show AF - EB = AFE - FC, since we can then
add the common rectangle AF - AF to either side. Let rectangles AG
and AH be completed, as by the method whereby Euclid constructs
a square in Elements 1.46; this gives us also the rectangle AELF. Let
BH and C'G be extended to meet at D; by FElements 1.43, it will be
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Figure 13: Intermediate form of Thales’s Theorem

enough to show that the diagonal AL, extended, passes through D, or
in other words, L lies on the diagonal AD of the rectangle ABDC'. But
triangles AFE and FAL are congruent by Elements 1.4, and likewise
triangles AC'B and C'AD are congruent. Thus

LFAL = ZAFE = LZACB = LCAD,

which is what we wanted to show. O

The foregoing is a special case of the following theorem, which does
not require the special case in its proof.

THEOREM 4. In triangles that share an angle, the parallelograms in
this angle that are bounded by alternate sides of the angle are equal if
and only if the triangles are equiangular.

Proof. Let the triangles be ABC' and AEF in Figure 13, and let
the parallelograms AG and AH be completed. Let the diagonals C'E
and BF be drawn. If the triangles are equiangular, then we have

FE||CB (3.4)

by Elements 1.27. In this case, as in Euclid’s proof of V1.2, the triangles
FEC and EF B are equal by 1.37. Adding triangle AFF' in common, we
obtain the equality of the triangles AEC' and AF B. This gives us the
equality of their doubles; and these, by 1.34, are just the parallelograms
AG and AH.

Conversely, if these parallelograms are equal, then so are their halves,
the triangles AEC and AF B; hence the triangles FEC and EF B are
equal, so (3.4) holds by FElements 1.39, and then the original triangles
ABC and AEF are equiangular by Elements 1.29. O
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Proclus [62, 352.15] inadvertently gives evidence that Thales could
use Theorem 3, if not Theorem 4. Discussing Flements 1.26, which is
the triangle-congruence theorem whose two parts are now abbreviated
as A.S.A. and A.A.S. [72, p. 62], and which we used earlier to prove
the concurrence of the medians of a triangle, Proclus says,
Eudemus in his history of geometry attributes the theorem
itself to Thales, saying that the method by which he is
reported to have determined the distance of ships at sea
shows that he must have used it.
If Thales really used Euclid’s 1.26 for measuring distances of ships, it
may indeed have been by the method that Heath suggests [39, pp. 132
3]: climb a tower, note the angle of depression of the ship, then find
an object on land at the same angle. The object’s distance is that of
the ship. This obviates any need to know the height of the tower, or to
know proportions. Supposedly one of Napoleon’s engineers measured
the width of a river this way.
Nonetheless, Gow [35, p. 141] observes plausibly that the method
that Heath will propose is not generally practical. Thales must have
had the more refined method of similar triangles:
It is hardly credible that, in order to ascertain the distance
of the ship, the observer should have thought it necessary
to reproduce and measure on land, in the horizontal plane,
the enormous triangle which he constructed in imagination
in a perpendicular plane over the sea. Such an undertak-
ing would have been so inconvenient and wearisome as to
deprive Thales’ discovery of its practical value. It is there-
fore probable that Thales knew another geometrical pro-
position: viz. ‘that the sides of equiangular triangles are
proportional.” (Euc. VI. 4.)

But Proposition V1.4 is overkill for measuring distances. All one needs

is the case of right triangles, in the form of Theorem 3 above. This

must be the real theorem that Gow goes on to discuss:
And here no doubt we have the real import of those Egyp-
tian calculations of segt, which Ahmes introduces as ex-
ercises in arithmetic. The seqt or ratio, between the dis-
tance of the ship and the height of the watch-tower is the
same as that between the corresponding sides of any small
but similar triangle. The discovery, therefore, attributed to
Thales is probably of Egyptian origin, for it is difficult to
see what other use the Egyptians could have made of their
seqt, when found. It may nevertheless be true that the pro-
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Figure 14: Converse of Elements 1.43

position, Euc. VI. 4, was not known, as now stated, either

to the Egyptians or to Thales. It would have been suffi-

cient for their purposes to know, inductively, that the seqts

of equiangular triangles were the same.
Gow is right that Euclid’s Proposition vI1.4 need not have been known.
But what he seems to mean is that the Egyptians and Thales need only
have had a knack for applying the theorem, without having stepped
back to recognize the theorem as such. This may be so; but there is
no reason to think they had a knack for applying the theorem in full
generality.

To establish that theorem, Thales’s Theorem, in full generality, we
shall prove that, in the proof of Theorem 3, equation (3.3) still holds,
even when applied to Figure 13 in the proof of Theorem 4. To do
this, we shall rely on the converse of Elements 1.43: in Figure 11, if the
parallelograms BG and G D are equal, then the point G must lie on the
diagonal AD. We can prove this by contradiction, or by contraposition.
If G did not lie on the diagonal, then we should be in the situation of
Figure 14, where now parallelograms BN and ND are equal, but BG
is part of BN, and ND is part of GD, so BG is less than GD, by
Euclid’s Common Notion 5.

In Euclid’s proof of the Pythagorean Theorem, Elements 1.47, three
auxiliary straight lines concur. Heath [26, Vol. 1, p. 367] passes along
Hero’s proof of this, including, as a lemma, the converse of 1.43. Hero’s
proof is direct, but relies on Elements 1.39: equal triangles lying on the
same side of the same base are in the same parallels. We used this in
proving Theorem 4, and it is the converse of 1.37; Euclid proves it by
contradiction, using Common Notion 5.
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Figure 15: Thales’s Theorem

THEOREM 5. If two parallelograms share an angle, the parallelo-
grams are equal if and only if the rectangles bounded by the same sides
are equal.

Proof. Let the parallelograms be AG and AH in Figure 15. Sup-
posing them equal, we prove (3.3), namely AF - AB = AFE - AC'. Let
the parallelogram ABDC be completed. By the converse of Elements
1.43, the point L lies on the diagonal AD. Now erect the perpendicu-
lars AR and AM (using Elements 1.10), and make them equal to AE
and AF respectively, as by drawing circles. Each of the parallelograms
NE and SF is equal to a rectangle of sides equal to AE and AF, by
Elements 1.35. Therefore A lies on the diagonal LX, again by the con-
verse of Flements 1.43, so A and L both lie on the diagonal DX of the
large parallelogram. Consequently, the parallelograms SC' and N B are
equal; but they are also equal to AE - AC' and AF - AB respectively.
The converse is similar. O

Theorems 4 and 5 together are what we are calling Thales’s Theorem,
provided we can establish FElements v1.16:
If four straight lines be proportional, the rectangle con-
tained by the extremes is equal to the rectangle contained
by the means; and [conversely].
To do this, we need a proper theoretical definition of proportion.

3.2. Thales and Desarques 1 suggested that the equivalence
of the proportion (3.1) with the equation (3.2) was “practical.” To read
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the colons in the expression
a:b::c:d, (3.5)

we can say any of the following:

1) a, b, ¢, and d are proportional;

2) ais to b as cis to d;

3) the ratio of a to b is the same as the ratio of ¢ to d.
From the last clause, we can delete the phrase “the same as”: this is
effectively what Plutarch does in the passage quoted above, although
the translator puts the phrase back in. The equation

a-d=b-c. (3.6)

does not in itself express a property of the ordered pair (a,b) that is
the same as the corresponding property of (c,d); it expresses only a
relation between the pairs. Immediately we have a - b = b - a, and if
(3.6) holds, so does ¢-b = d - a; so the relation expressed by (3.6)
between (a,b) and (¢, d) is reflexive and symmetric. The relation is not
obviously transitive: if (3.6) holds, and ¢- f = d - e, it is not obvious
that a - f = b-e. It would be true, for example, if we allowed passage
to a fourth dimension, obtaining from the hypotheses

a-d-c-f=b-c-d-e,

whence, presumably, the desired conclusion would follow; but this would
be a theorem. Therefore (3.6) alone cannot constitute the definition of
(3.5). I have argued this elsewhere in the context of Euclid’s number
theory [58].

Suppose now that each of the letters in (3.5) stands for a length:
not a number, but the class of Euclidean bounded straight lines that
are equal to a particular straight line. I propose to define (3.5) to mean
that for all lengths x and y,

br=a-y < d-z=c-y. (3.7)
In other words, (3.5) means that the sets
{(z,y):b-2=a-yj, {(z,y): d-z=c-y}

are the same. This definition ensures logically that the relation of hav-
ing the same ratio is transitive, as any relation described as a sameness
should be. The definition also ensures that (3.5) implies (3.6). The defi-
nition avoids the “Archimedean” assumption required by the definition
attributed to Eudoxus, found in Book v of the Elements. However, we
need to prove that (3.6) implies (3.5). This implication is Elements
VI.16 for the new definition of proportion.
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Figure 16: Transitivity

THEOREM 6. If, of four lengths, the rectangle bounded by the ex-
tremes 1s equal to the rectangle bounded by the means, then the lengths
are in proportion.

Proof. Supposing we are given four lengths a, b, ¢, d such that (3.6)
holds, we want to show (3.5), as defined by (3.7). It is enough to show
that, if two lengths e and f are such that

a-f=b-e, (3.8)
then
c-f=d-e. (3.9)

In Figure 16, let AH and AL have lengths ¢ and e respectively. Draw
AG parallel to HL (Elements 1.31), and let AG have length a. Complete
the parallelogram ABDC' so that GB and HC' have lengths b and
d respectively. By (3.6) and Theorem 5, the parallelograms GP and
HN are equal. Now complete the parallelogram ABFE, and denote
by ¢ the length of LE. The parallelograms GR and GP are equal, by
FElements 1.35. Both LM and HK have length a (FElements 1.34), so
parallelograms L() and HN are equal, by Elements 1.36. Thus GR and
L) are equal. Hence, by Theorem 5, we have

a-g=>b-e,
soa-g=a-f by (3.8), and therefore ¢ = f by Common Notion 5.
Since LH || EC, we have (3.9) by Theorem 5. O

There are easy consequences, corresponding to Propositions 16 and
22 of Elements Book v; but these propositions are not themselves so
easy to prove with the Eudoxan definition of proportion.
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COROLLARY 1 Alternation.

a:b::c:d = a:c::b:d.
Proof. Each proportion is equivalent to a-d =10b-c. O

In a note on v.16, Heath [26, Vol. 2, pp. 165-6] observes that the
proposition is easier to prove when—as for us—the magnitudes being
considered are lengths. He quotes the textbook of Smith and Bryant
[67, pp. 298-9], which derives the special case from VI.1: parallelograms
and triangles under the same height are to one another as their bases.
We might write this as

a:b::a-c:b-c.

One could take this as a definition of proportion; but then one has the
problem of transitivity, as before. If

a:b::c-e:d-e

for some e, meaning c-e =a- f and d-e = b- f for some f, one has to
show the same for arbitrary e.

COROLLARY 2 Cancellation.
a:b::d:e
b:c::e:f} = a:c::d: f.
Proof.  Under the hypothesis, by alternation, a : d :: b : e and
b:e::c:f.Thena:d::c: f,since sameness of ratio is transitive by
definition. n

Theorems 4, 5, and 6 together constitute Thales’s Theorem. In prov-
ing Theorem 6, we effectively showed in Figure 16

BC | GH & CE | HL = BE | GL, (3.10)

provided also
CE || AB. (3.11)

Then by Thales’s Theorem itself, since sameness of ratio is transitive,
(3.10) holds, without need for (3.11). This is Desargues’s Theorem:
if the straight lines through corresponding vertices of two triangles
concur, and two pairs of corresponding sides of the triangles are parallel,
then the third pair must be parallel, as in Figure 17. We have proved
this from Book 1 of Euclid, without the Archimedean assumption of
Book v, though with Common Notion 5 for areas.
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Figure 17: Desargues’s Theorem

Desargues’s Theorem has other cases in the Euclidean plane. When
we add to this plane the “line at infinity,” thus obtaining the projective
plane, then the three pairs of parallel lines in the theorem intersect on
the new line. But then any line of the projective plane can serve as a
line at infinity added to a Euclidean plane. A way to show this is by
the kind of coordinatization that we are in the process of developing.

3.3. Locus problems Fixing a unit length, Descartes [21, p. 5]
defines the product ab of lengths a and b as another length, given by
the rule that we may express as

l:a::b:ab.

Denoting Decartes’s product thus, by juxtaposition alone, while contin-
uing to denote with a dot the area of a rectangle with given dimensions,
by Theorem 6 we have

ab-1=ua-b.

In particular, Cartesian multiplication is commutative, and it distributes
over addition, since

a-b=">b-a, a-(b+c¢)=a-b+a-c,
and from Common Notion 5 we have
d-l=e-1 = d=ce.

That Cartesian multiplication is associative can be seen from the re-
lated operation of composition of ratios, given by the rule

(a:0)&((b:c)::a:c (3.12)

One may prefer to use the sign = of equality here, rather than the sign
:: of sameness of ratio, if one judges it not to be immediate that the
compound ratio (a : b) & (b : ¢) depends not merely on the ratios a : b
and b : ¢, but on their given representations in terms of a, b, and c.
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Nonetheless, it does depend only on the ratios, by Corollary 2. Then
composition of ratios is immediately associative. We have generally

(@:b)&(c:d)::e:d,

provided a : b :: e : ¢; and such e can be found, by the method of
Elements 1.44 and 45. Then

(@:1)&(b:1)::ab:1,
and from this we can derive a(bc) = (ab)c. Also
(a:1)&(1:a)::1:1,

so multiplication is invertible.
One can define the sum of two ratios as one defines the sum of frac-
tions in school, by finding a common denominator. In particular,

(a: 1)+ (b:1)=(a+Db):1,

where now it does seem appropriate to start using the sign of equality.
Now both lengths and ratios compose fields, in fact ordered fields, which
are isomorphic under x + x : 1. Descartes shows this implicitly, this
in order to solve ancient problems. One may object that we have not
introduced additive inverses, whether of lengths or of ratios. We can
do this by assigning to each class of parallel straight lines a direction,
so that the signed length of BA is the additive inverse of the signed
length of AB.

Descartes [21, p. 40, n. 59] alludes to a passage in the Collection
where Pappus [70, pp. 346-53] describes three kinds of geometry prob-
lem: plane, as being solved by means of straight lines and circles, which
lie in a plane; solid, as requiring also the use of conic sections, which
are sections of a solid figure, the cone; and linear, as involving more
complicated lines, that is, curves. An example of a linear problem then
would be the quadrature or squaring of the circle, achieved by means
of the quadratrix or “tetragonizer” (rerpaywvilovoa), which Pappus
[70, pp. 336-47] defines as being traced in a square, such as ABGD
in Figure 18, by the intersection of two straight lines, one horizontal
and moving from the top edge BG to the bottom edge AD, the other
swinging about the lower left corner A from the left edge AB to the
bottom edge AD. If there is a point H where the quadratrix meets the
lower edge of the square, then, as Pappus shows,

BD : AB:: AB: AH,

where BD is the circular arc centered at A. In modern terms, with



56 DAVID PIERCE

B G
i
./
7.
/
/
______ L ___
I /
/
/
/
/
y )/
/
/
/
/
‘0
A H D

Figure 18: The quadratrix

variables as in the figure, AB being taken as a unit,

o = E, tanf = Q’

y 2 T
SO

2 0
YT 0 tand

As 6 vanishes, x goes to 2/m. This then is the length of AH. Pappus
points out that we have no way to construct the quadratrix without
knowing where the point H is in the first place. He attributes this
criticism to one Sporus, about whom we apparently have no source but
Pappus himself [6, p. 285, n. 78].

A solid problem that Pappus describes [70, pp. 486-9] is the four-
line locus problem: find the locus of points such that the rectangle
whose dimensions are the distances to two given straight lines bears
a given ratio to the rectangle whose dimensions are the distances to
two more given straight lines. According to Pappus, theorems of Apol-
lonius were needed to solve this problem; but it is not clear whether
Pappus thinks Apollonius actually did work out a full solution. By
the last three propositions, namely 54-6, of Book III of the Conics of
Apollonius, it is implied that the conic sections are three-line loci, that
is, solutions to the four-line locus problem when two of the lines are
identical. Taliaferro [3, pp. 267-75] works out the details and derives
the theorem that the conic sections are four-line loci.

Descartes works out a full solution to the four-line locus problem [21,
pp. 59-80]. He also solves a particular five-line locus problem, where
four of the straight lines—say fy, {1, {5, and ¢3—are parallel to one
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Figure 19: Solution of a five-line locus problem

another, each a distance a from the previous, while the fifth line—¢,—
is perpendicular to them [21, pp. 83-4]. What is the locus of points
such that the product of their distances to £y, ¢1, and /3 is equal to the
product of a with the distances to ¢ and ¢,7 One can write down an
equation for the locus, and Descartes does. Letting distances from /4
and /5 be x and y respectively, Descartes obtains

y® — 2ay® — o’y + 2a® = axy. (3.13)
This may allow us to plot points on the desired locus, obtaining the
bold solid curve in Figure 19; but we could already do that. The equa-
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tion is thus not a solution to the locus problem, since it does not tell us
what the locus is. But Descartes shows that the locus is traced by the
intersection of a moving parabola with a straight line passing through
one fixed point and one point that moves with the parabola, as sug-
gested by the dashed lines in Figure 19. The parabola has axis sliding
along /5, and the latus rectum of the parabola is a, so the parabola
is given by ax = y? when its vertex is on ¢,. The straight line passes
through the intersection of ¢y and ¢, and through the point on the axis
of the parabola whose distance from the vertex is a.

We shall be looking at latera recta again later; meanwhile, one may
consult my article “Abscissas and Ordinates” [57], to learn more than
one ever imagined wanting to know about the terminology.

Descartes’s solution of a five-line locus problem is apparently one that
Pappus would recognize as such. Thus Descartes’s algebraic methods
would seem to represent an advance, and not just a different way of
doing mathematics. As Descartes knows [21, p. 22, n. 34], Pappus [71,
pp. 600-3] could formulate the 2n- and (2n+ 1)-line locus problems for
arbitrary n. If n > 3, the ratio of the product of n segments with the
product of n segments can be understood as the ratio compounded of
the respective ratios of segment to segment. Given 2n lengths aq, . . .
, Gn, b1, ..., b,, we can understand the ratio of the product of the ay
to the product of the by as the composite ratio

(alzbl)&---&(an:bn).

Pappus recognizes this. Descartes expresses the solution of the 2n-line
locus problem as an nth-degree polynomial equation in x and y, where
y is the distance from a point of the locus to one of the given straight
lines, and x is the distance from a given point on that line to the foot
of the perpendicular from the point of the locus. Today we call the line
the r-axis, and the perpendicular through the given point on it the
y-axis; but Descartes does not seem to have done this expressly.

Descartes does effectively allow oblique axes. The original locus prob-
lems literally involve not distances to the given lines, but lengths of
straight lines drawn at given angles to the given lines.

3.4. The nine-point conic The nine-point conic is the solution
of a locus problem. The solution had been known earlier; but apparently
the solution was first remarked on in 1892 by Maxime Bocher [11], who
says,

It does not seem to have been noticed that a few well-known
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facts, when properly stated, yield the following direct gen-
eralization of the famous nine point circle theorem:—
Given a triangle ABC and a point P in its plane, a conic
can be drawn through the following nine points:
(1) The middle points of the sides of the triangle;
(2) The middle points of the lines joining P to the vertices
of the triangle;
(3) The points where these last named lines cut the sides of
the triangle.
The conic possessing these properties is simply the locus of
the centre of the conics passing through the four points A,
B, C, P (cf. Salmon’s Conic Sections, p. 153, Fz. 3, and
p. 302, Ex. 15).
Bocher’s references fit the sixth and tenth editions of Salmon’s Treatise
on Conic Sections, dated 1879 and 1896 respectively [65, 66]; but in the
“Third Edition, revised and enlarged,” dated 1855 [64], the references
would be p. 137, Ex. 4, and p. 284, Art. 339.
Following Salmon, we start with a general equation

az? 4+ 2hxy + by® + 292 + 2fy + ¢ =0 (3.14)

of the second degree. We do not assume that z and y are measured
at right angles to one another: we allow oblique axes. We do assume
ab # 0. If we wish, we can eliminate the xy term by redrawing the
x-axis, and changing its scale, so that the point now designed by (z,y)
is the one that was called (z — hy/a,y) before. The curve that was
defined by (3.14) is now defined by

2 h? 2 gh
azx —|—(b—;)y +2g:c+2(f—7)y+c:0. (3.15)
If the linear terms in (3.14) are absent, then they are absent from (3.15)
as well.

The equation (3.15) defines an ellipse or hyperbola, no matter what
the angle is between the axes, or what their relative scales are. This is
perhaps not, strictly speaking, high-school knowledge. One may know
from school that an equation

1.2 y2

a? "~ b?
defines a certain curve called ellipse or hyperbola, depending on whether
the upper or lower sign is taken. But one assumes that x and y are mea-
sured orthogonally. One does not learn why the curves are named as
they are [57], and one does not learn that, if the appropriate oblique

=1
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axes are chosen, then the curve has an equation of the same form.
But this is just what Book I of the Conics of Apollonius is devoted to
showing [3].

Going back to the original axes, and the curve defined by (3.14), we
translate the axes, so that the new origin is the point formerly called
(«',y"). The curve is now given by

az® + 2hay + by? + 29’z + 2f'y + ¢ =0,
where
g =ar'+hy +g, [ =by +ha'+f, (3.16)
and we are not interested in ¢’. The curve given by (3.14) has center
at (z’,y') just in case (¢', f') = (0,0).

For a complete quadrangle in which one pair (at least) of opposite
sides are not parallel, those sides determine a coordinate system. In this
system, suppose the vertices of the complete quadrilateral are (), 0) and
(N, 0) on the z-axis and (0, 1) and (0, 4') on the y-axis. Let the conic
given by (3.14) pass through these four points. Setting y = 0, we obtain
the equation

az? +2gx +c =0,
which must have roots A and X, so that the equation is
a(z® = (A + Xz + AX) = 0.
From this we obtain
29 = —a(A+ ), c=a\\.
Likewise, setting x = 0 in (3.14) yields the equation
by? +2fy +c=0,
which must be
b(y* — (n+ )y + ') =0,

from which we obtain

2f = =b(pu + 1), c=bup'.
From the two expressions for ¢, we have
a X = by

In (3.14), we are free to let a = /. Then b = AN, and (3.14) becomes

'z + 2hay + ANy
— ' A+ Nz = AN (e + 1)y + W pp' =0, (3.17)
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By the computations for (3.16), the center of the conic in (3.17) satisfies
2up'z + 2hy — pp' A+ N') =0,
2Ny + 2 — AN (i + 1) = 0.
Eliminating A yields
2up/z? — pp (N + N = 22N y* — AN (p + p)y. (3.18)

This is the equation of an ellipse or hyperbola passing through the
origin. We can also write the equation as

u,u'x(x—)\;)\):)\)\’y<y—'u+'u); (3.19)

2

this shows that the conic passes through the midpoints of the sides
of the complete quadrangle that lie along the axes. By symmetry, the
conic passes through the midpoints of all six sides of the quadrangle,
and through its three diagonal points—if these exist, that is, if none of
the three pairs of opposite sides of the quadrangle are parallel.

I suggested earlier that for Descartes to solve a five-line locus prob-
lem, it was not enough to find the equation (3.13); he had to describe
the solution geometrically. We do have a thorough geometric under-
standing of solutions of second-degree equations like (3.18) and (3.19)
or even (3.14). Alternatively, there is a modern “synthetic” approach
[20, 8.71, p. 118], that is, an approach based not on field axioms, but
on geometric axioms: here axioms for a projective plane, but with a
line at infinity designated, so that midpoints of segments of other lines
can be defined.

I do not know how directly the nine-point conic can be derived from
the work of Apollonius. Here I shall just want to look briefly at an
example of how Apollonius uses areas in a way not easily made alge-
braic. David Hilbert shows how algebra is possible, without a prior:
assumptions about areas; but it is not clear how much is gained.

4. Lengths and Areas

4.1. Algebra The points of an unbounded straight line are ele-
ments of an ordered abelian group with respect to the obvious notion
of addition, once an origin and a direction have been selected. If we
set up two straight lines at right angles to one another, letting their
intersection point be the origin, then, after fixing also a unit length,
we obtain Hilbert’s definition of multiplication as in Figure 20, the two
oblique lines being parallel.

Not having accepted the Eudoxan definition of proportion, or Thales’s
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0 1 b

Figure 20: Hilbert’s multiplication

c(db)

ca

0 e 4 » » d(ca)
a db

Figure 21: Pappus’s Theorem

Theorem, Hilbert can still show that multiplication is commutative and
associative. He does this by means of what he calls Pascal’s Theorem,
although it was referred to in the Introduction above as Pappus’s The-
orem: if the vertices of a hexagon lie alternately on two straight lines in
the projective plane, then the intersection points of the three pairs of
opposite sides lie on a straight line. Pascal announced the generaliza-
tion in which the original two straight lines can be an arbitrary conic
section [14, 69].

When we give Pappus’s Theorem in the Euclidean plane, the sim-
plest case occurs as in Figure 21, labelled for proving commutativity
and associativity of multiplication (in case the angle at 0 is right). In
general, if there are two pairs of parallel opposite sides of the hexagon
that is woven like a spider’s web or cat’s cradle across the angle, then
the third pair of opposite sides are parallel as well. By the numbering in
Hultsch’s edition of Pappus’s Collection [51], which is apparently the
numbering made originally by Commandinus [52, pp. 62-3, 77|, the
result is Proposition 134 in Book VII; it is also number Vil of Pappus’s
lemmas for the now-lost Porisms of Euclid.
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° N

a

Figure 22: Hilbert’s trigonometry

Lemma VIII seems to have been sadly forgotten. The case of Pap-
pus’s Theorem where the three pairs of opposite sides all intersect is
Propositions 138 and 139, or Lemmas X1I and XI1I: these cover the cases
when the straight lines on which the vertices of the hexagon lie are par-
allel and not, respectively. Kline cites only Proposition 139 as giving
Pappus’s Theorem [46, p. 128]. In his summary of most of Pappus’s
lemmas for Euclid’s Porisms, Heath [40, p. 419-24] lists Propositions
138, 139, 141, and 143 as constituting Pappus’s Theorem. The last two
are converses of the first two, as Pappus states them. It is not clear that
Pappus recognizes a single theme behind the several of his lemmas that
constitute the theorem named for him. He omits the case where exactly
one pair of opposite sides are parallel.

Heath omits to mention Proposition 134 at all. This is a strange
oversight for an important theorem. Pappus proves it by means of areas,
using Euclid’s 1.39, as we proved Theorem 4. Without using areas,
Hilbert gives two elaborate proofs, one of which, in the situation of
Figure 22, uses the notation

a = acC

for what today might be written as a = ccosa.
For proving associativity and commutativity of multiplication, Hartshorne
has a more streamlined approach, in Geometry: Euclid and Beyond [37,
pp. 170-2]. In Figure 23, AC has the two lengths indicated, so these
are the same; that is,

a(bc) = b(ac). (4.1)

Letting ¢ = 1 gives commutativity; then this with (4.1) gives associa-
tivity. Distributivity follows from Figure 24, where

ab+ ac =a(b+ c).

The advantage of defining multiplication in terms of lengths alone
(and right angles, and parallelism, but not parallelograms or other
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D

Figure 23: Associativity and commutativity

o

b

Figure 24: Distributivity

bounded regions of the plane) is that it allows all straight-sided re-
gions to be linearly ordered by size, without assuming a prior: that the
whole region is greater than the part.

Euclid provides for an ordering in FElements 1.44 and 45, which show
that every straight-sided region is equal to a rectangle on a given base.
Finding the rectangle involves 1.43. Showing the rectangle unique re-
quires the converse of 1.43, which in turn requires Common Notion 5
for areas. The triangle may be equal to the rectangle on the same base
with half the height; but there are three choices of base, and so three
rectangles result that are equal to the triangle. When they are all made
equal to rectangles on the same base, why should they have the same
height? Common Notion 5 is one reason; but Hilbert doesn’t need it.

The triangle is equal to the rectangle whose base is half the perimeter
of the triangle and whose height is the radius of the inscribed circle:
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C

A - B

Figure 25: Circle inscribed in triangle

C

A

Figure 26: Area of triangle in two ways

see Figure 25, where the triangle ABC'is equal to the sum of AG-GD,

BG-GD,and CE-ED, but ED = GD. However, if ABC'is cut into two

triangles, and rectangles equal to the two triangles are found, added

together, and made equal to a rectangle whose base is again half the

perimeter of ABC', we need to know that the height is equal to GD.
In the notation of Figure 26, we have

h = csin a, k = bsin «,

where sin o stands for the appropriate length, and the multiplication
is Hilbert’s; and then

bh = besin o = ¢bsin o = ck.

Thus we can define the area of ABC unambiguously as the length
bh/2. With this definition, when the triangle is divided into two parts,
or indeed into many parts, as Hilbert shows, the area of the whole is
the sum of the areas of the parts.

Moreover, if two areas become equal when equal areas are added,
then the two original areas are themselves equal: this is Euclid’s Com-
mon Notion 3, but Hilbert makes it a theorem. One might classify this
theorem with the one that almost every human being learns in child-
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hood, but almost nobody ever recognizes as a theorem: no matter how
you count a finite set, you always get the same number. It can be valu-
able to become clear about the basics, as I have argued concerning the
little-recognized distinction between induction and recursion [55].

4.2.  Apollonius We look at a proof by Apollonius, in order
to consider Descartes’s idea, quoted in the Introduction, that ancient
mathematicians had a secret method.

We first set the stage; this is done in more detail in [57]. A cone
is determined by a base, which is a circle, and a vertex, not in the
plane of the base, but not necessarily hovering right over the center of
the base either: the cone may be oblique. The surface of the cone is
traced out by the straight lines that pass through the vertex and the
circumference of the base. A diameter of the base is also the base of an
axial triangle, whose apex is the vertex of the cone. If a chord of the
base of the cone cuts the base of the axial triangle at right angles, then
a plane containing the chord and parallel to a side of the axial triangle
cuts the surface of the cone in a parabola. The cutting plane cuts the
axial triangle in a straight line that is called a diameter of the parabola
because the line bisects the chords of the parabola that are parallel to
the base of the cone. Half of such a chord is an ordinate; it cuts off
from the diameter the corresponding abscissa, the other endpoint of
this being the vertex of the parabola. There is some bounded straight
line, the latus rectum, such that, when the square on any ordinate is
made equal to a rectangle on the abscissa, the other side of the rectangle
is precisely the latus rectum: this is Proposition 1.11 of Apollonius, and
it is the reason for the term parabola, meaning application.

The tangent to the parabola at the vertex is parallel to the ordinates.
We are going to show that every straight line parallel to the diameter is
another diameter, with a corresponding latus rectum; and latera recta
are to one another as the squares on the straight lines, each of which is
drawn drawn tangent to the parabola from vertex to other diameter.

In Cartesian terms, we may start with a diameter that is an axis in
the sense of being at right angles to its ordinates. If the latus rectum
is /, then the parabola can be given by

by = 2*. (4.2)

As in Figure 27, the tangent to the parabola at (a,a?/¢) cuts the y-axis
at —a?//: this can be shown with calculus, but it is Proposition 1.35 of
Apollonius. The tangent then is

ly = 2ax — a®.
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a?/t

—a?/t

Figure 27: Change of coordinates

We shall take this and x = a as new axes, say 2’- and y'-axes. If d is
the distance between the new origin to the intersection of the x’-axis
with the y-axis, then, since the x- and y-axes are orthogonal, by the
Pythagorean Theorem (FElements 1.47) we have

202\ a2
2 _ 2 — Y242
d°=a +< / ) 62(£ + 4a”)
Let b = /(2 + 4a?, so d = ba/l. Then
0d
lx' = —(x — a) = bx — ba, by’ = by — 2ax + a?,
a
SO
! ! 2a ! 2
br = (x' + ba, ly =ty +?(€m +ba) —a
2
zﬁy'+%m/+a2.

Plugging into (4.2) yields
20 l ?
fy'+—a9:'+a2 =|-2+a) ,
b b
vy = ().
In particular, the new latus rectum is %/, which is as claimed, since
v /0% = d*/a®.
For his own proof of this, Apollonius uses a lemma, Proposition 1.42



68 DAVID PIERCE
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A E B Z (]
Figure 28: Proposition 1.42 of Apollonius

[2, p. 128-31]. In Figure 28, we have a parabola I'AB with diameter
BO. Here AZ and I'O are ordinates, and BH is parallel to these, so it
is tangent to the parabola at B. The straight line AI' is tangent to the
parabola at I', which means, by 1.35,

AB = B6. (4.3)
Then
AT'® = HO, (4.4)

the latter being the parallelogram with those opposite vertices. The
straight line AE is drawn parallel to I'A. Then triangles AI'O and EAZ
are similar, so their ratio is that of the squares on their bases, those
bases being the ordinates mentioned. Then the abscissas BO® and BZ
are in that ratio, and hence the parallelograms HO® and HZ are in that
ratio. By (4.4) then, AT'® has the same ratio to HZ that it does to
EAZ. Therefore

EAZ = HZ.

The relative positions of A and I' on the parabola are irrelevant to the
argument: this will matter for the next theorem.

In Figure 29 now, KAB is a parabola with diameter BM, and I'A
is tangent to the parabola, and through A, parallel to the diameter,
straight line AN is drawn and extended to Z so that ZB is parallel to
the ordinate AZ. A length H is taken such that

EA:AZ::H:2l'A (4.5)
Through a random point K on the parabola, KA is drawn parallel to
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K

ri B = M
Figure 29: Proposition 1.49 of Apollonius

the tangent I'A. We shall show
KA? =H - AA, (4.6)

so that AN serves as a new diameter of the parabola, with correspond-
ing latus rectum H. This is Proposition 1.49 of Apollonius.
Since, as before, I'B = BE, we have

EZA = ETB. (4.7)

Let ordinate KNM be drawn. Adding to either side of (4.7) the pen-
tagon AEBMN, we have

ZM = A'MN.

Let KA be extended to I1. By the lemma that we proved above, KIIM =
ZM. Thus

KIIM = AT'MN.
Subtracting the trapezoid AIIMN gives
KAN = AT

From this, by Theorem 5 above, we have

KA - AN = 2AA - AT (4.8)
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Figure 30: Symmetries

We now compute

KA? :KA-AN:: KA : AN

: EA: AZ

. H:2l'A [by (4.5)]
o H-AA:2AA-TA

.- H-AA: KA - AN, [by (4.8)]

which yields (4.8). We have assumed K to be on the other side of AN
from BM. The argument can be adapted to the other case. Then, as
a corollary, we have that AN bisects all chords parallel to AI'. In fact
Apollonius proves this independently, in Proposition 1.46.

Could Apollonius have created the proof of 1.49 for pedagogical or
ideological reasons, after verifying the theorem itself by Cartesian meth-
ods, such we we employed? I have not found any reason to think so.
Before Apollonius, it seems that only the right cone was studied, and
the only sections considered were made by planes that were orthogonal
to straight lines in the surface of the cone [1, p. xxiv]. Whether an
ellipse, parabola, or hyperbola was obtained depended on the angle at
the vertex of the cone. The recognition that the cone can be oblique,
and every section can be obtained from every cone, seems to be due
to Apollonius. That our Cartesian argument started with orthogonal
axes corresponds to starting with a right cone. On the other hand, this
feature was not essential to the argument; we did not really need the
parameter b.

5. Unity

In addition to Elements 1.26, which is A.S.A. and A.A.S. as discussed
earlier, Proclus [62, 157.11, 250.20, 299.4] attributes to Thales three
more of Euclid’s propositions, depicted in Figure 30:
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1) the diameter bisects the circle, as in the remark on, or addendum

to, the definition of diameter given at the head of the Elements;

2) the base angles of an isosceles triangle are equal (1.5);

3) vertical angles are equal (1.15).

Kant alludes to the second of these theorems in the Preface to the B

Edition of the Critique of Pure Reason, in a purple passage of praise

for the person who discovered the theorem [44, B x—xi, p. 107-8]:
Mathematics has, from the earliest times to which the
history of human reason reaches, in that admirable people
the Greeks, traveled the secure path of a science. Yet it
must not be thought that it was as easy for it as for logic—
in which reason has to do only with itself—to find that
royal path, or rather itself to open it up; rather, I believe
that mathematics was left groping about for a long time
(chiefly among the Egyptians), and that its transformation
is to be ascribed to a revolution, brought about by the
happy inspiration of a single man in an attempt from which
the road to be taken onward could no longer be missed,
and the secure course of a science was entered on and pre-
scribed for all time and to an infinite extent. The history
of this revolution in the way of thinking—which was far
more important than the discovery of the way around the
famous Cape—and of the lucky one who brought it about,
has not been preserved for us. But the legend handed down
to us by Diogenes Laertius—who names the reputed inven-
tor of the smallest elements of geometrical demonstration,
even of those that, according to common judgment, stand
in no need of proof—proves that the memory of the alter-
ation wrought by the discovery of this new path in its ear-
liest footsteps must have seemed exceedingly important to
mathematicians, and was thereby rendered unforgettable.
A new light broke upon the person who demonstrated the
isosceles triangle (whether he was called “Thales” or had
some other name).

The boldface is Kant’s. The editors cite a letter in which Kant confirms

the allusion to Elements 1.5.

In apparent disagreement with Kant, I would suggest that revolu-
tions in thought need not persist; they must be made afresh by each
new thinker. The student need not realize her or his potential for new
thought, no matter how open the royal path may seem to the teacher.

Kant refers to the discovery of the southern route around Africa: does
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he mean the discovery by Bartolomeu Dias in 1488, or the discovery
by the Phoenicians, sailing the other directions, two thousand years
earlier, described by Herodotus [42, 1v.42, pp. 297-9]7 The account of
Herodotus is made plausible by his disbelief that, in sailing west around
the Cape of Good Hope, the Phoenicians could have found the sun on
their right. Their route was not maintained, which is why Dias can be
hailed as its discoverer.

Likewise may routes to mathematical understanding not be main-
tained. Much of ancient mathematics has been lost to us, in the slow
catastrophe alluded to by the title of The Forgotten Revolution [63,
p. 8]. Here Lucio Russo points out that the last of the eight books of
Apollonius on conic sections no longer exists, while Books v—VII survive
only in Arabic translation, and we have only Books I-1vV in the original
Greek. Presumably this is because the later books of Apollonius were
found too difficult by anybody who could afford to have copies made.

We may be able to recover the achievement of Thales, if Thales be his
name. There is no reason in principle why we cannot understand him as
well as we understand anybody; but time and loss present great obsta-
cles. Kant continues with his own interpretation of Thales’s thought:

For he found that what he had to do was not to trace

what he saw in this figure, or even trace its mere concept,

and read off, as it were, from the properties of the figure;

but rather that he had to produce the latter from what

he himself thought into the object and presented (through

construction) according to a priori concepts, and that in

order to know something securely a priori he had to as-

cribe to the thing nothing except what followed necessarily

from what he himself had put into it in accordance with its

concept.
Kant is right, if he means that the equality of the base angles of an
isosceles triangle does not follow merely from a figure of an isosce-
les triangle. The figure itself represents only one instance of the general
claim. One has to recognize that the figure is constructed according to a
principle, which in this case can be understood as symmetry. The three
shapes in Figure 30 embody a symmetry that justifies the correspond-
ing theorems, even though Euclid does not appeal to this symmetry in
his proofs.

As we discussed, Thales is also thought to have discovered that the
angle in a semicircle is right, and he may have done this by recogniz-
ing that any two diameters of a circle are diagonals of an equiangu-
lar quadrilateral. Such quadrilaterals are rectangles, but this is not so



THALES AND THE NINE-POINT CONIC 73

fundamental an observation as the equality of the base angles of an
isosceles triangle; in fact the “observation” can be disputed, as it was
by Lobachevski [48].

Thales is held to be the founder of the Ionian school of philosophy. In
Before Philosophy [33, p. 251], the Frankforts say of the Ionian school
that its members

proceeded, with preposterous boldness, on an entirely un-
proved assumption. They held that the universe is an intel-
ligible whole. In other words, they presumed that a single
order underlies the chaos of our perceptions and, further-
more, that we are able to comprehend that order.
For Thales, the order of the world was apparently to be explained
through the medium of water. However, this information is third-hand
at best. Aristotle says in De Caelo [8, I11.13, pp. 430],
By these considerations some have been led to assert that
the earth below us is infinite, saying, with Xenophanes of
Colophon, that it has ‘pushed its roots to infinity’,—in or-
der to save the trouble of seeking for the cause . . . Others
say the earth rests upon water. This, indeed, is the oldest
theory that has been preserved, and is attributed to Thales
of Miletus. It was supposed to stay still because it floated
like wood and other similar substances, which are so con-
stituted as to rest upon water but not upon air. As if the
same account had not to be given of the water which carries
the earth as of the earth itself!
Aristotle has only second-hand information on Thales, who seems not
to have written any books. It may be that Aristotle does not understand
what questions Thales was trying to answer. Aristotle has his own
questions, and criticizes Thales for not answering them.

Aristotle may do a little better by Thales in the Metaphysics |9,

983224, pp. 693-5], where he says,
Of the first philosophers, then, most thought the principles
which were of the nature of matter were the only principles
of all things . . . Yet they do not all agree as to the num-
ber and the nature of these principles. Thales, the founder
of this type of philosophy, says the principle is water (for
which reason he declared that the earth rests on water), get-
ting the notion perhaps from seeing that the nutriment of
all things is moist, and that heat itself is generated from the
moist and kept alive by it (and that from which they come
to be is a principle of all things). He got his notion from
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this fact, and from the fact that the seeds [ra omépparal of
all things have a moist nature, and that water is the origin
of the nature of moist things.
In The Idea of Nature [16, pp. 31-2], Collingwood has a poetic inter-
pretation of this:
The point to be noticed here is not what Aristotle says
but what it presupposes, namely that Thales conceived the
world of nature as an organism: in fact, as an animal . . .
he may possibly have conceived the earth as grazing, so to
speak, on the water in which it floats, thus repairing its
own tissues and the tissues of everything in it by taking
in water from this ocean and transforming it, by processes
akin to respiration and digestion, into the various parts of
its own body . . . This animal lived in the medium out of
which it was made, as a cow lives in a meadow. But now
the question arose, How did the cow get there? . . . The
world was not born, it was made; made by the only maker
that dare frame its fearful symmetry: God.
Collingwood is presumably alluding to the sixth and final stanza of
William Blake’s poem “The Tyger” [10]:

Tyger Tyger burning bright,

In the forests of the night,

What immortal hand or eye,

Dare frame thy fearful symmetry?
Like most animals, the tiger exhibits bilateral symmetry, the kind of
symmetry shown in Figure 30, though this may not be what Blake is
referring to: his illustration for the poem shows a tiger from the side, not
the front. For Euclid, ovpuuerpia is what we now call commensurability;
symmetry may also be balance and harmony in a non-mathematical
sense [59]. But this would seem to be what Thales saw, or sought,
in the world, and it is akin to his recognition of the unity underlying
all isosceles triangles, a unity whereby the equality of the base angles
of each of them can be established once for all. What made Thales a
philosopher made him a mathematician.
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